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Abstract— A good data corpus lies at the heart of progress in
both perceptual/cognitive science and in computer vision. While
there are a few datasets that deal with simple actions, creating a
realistic corpus for complex, long action sequences that contains
also human-human interactions has so far not been attempted
to our knowledge. Here, we introduce such a corpus for
(inter)action understanding that contains six everyday scenarios
taking place in a kitchen / living-room setting. Each scenario
was acted out several times by different pairs of actors and
contains simple object interactions as well as spoken dialogue.
In addition, each scenario was first recorded with several HD
cameras and also with motion-capturing of the actors and
several key objects. Having access to the motion capture data
allows not only for kinematic analyses, but also allows for
the production of realistic animations where all aspects of the
scenario can be fully controlled. We also present results from a
first series of perceptual experiments that show how humans are
able to infer scenario classes, as well as individual actions and
objects from computer animations of everyday situations. These
results can serve as a benchmark for future computational
approaches that begin to take on complex action understanding.

I. INTRODUCTION

How do we recognize actions? How do we understand that
someone is engaged in a complex task, such as preparing din-
ner? Making inferences about complex actions and scenarios
from visual input alone is a seemingly easy and trivial task
for the human brain - the amount of data and detail that
humans need to process to arrive at these interpretations,
however, is far from trivial. A deeper understanding of how
humans are able to interpret human (inter)actions not only
informs the perceptual and cognitive sciences, but it also
lies at the core of building better artificial cognitive systems
for action understanding. Action understanding and modeling
have a long history in computer vision and computer graph-
ics. However, the question for any of these systems is: how
do we best evaluate their performance? Here, we introduce a
new resource for both human and computational experiments
that can serve as a benchmark in both fields: the POETICON
enacted scenario corpus1.

Reproducing an act by the interplay of perception and
action, and using natural language for communicating the
intentionality behind the act is what Aristotle termed ’Po-
etics’. POETICON is an EU-funded research project that
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explores exactly this ’poetics of everyday life’, i.e., the
synthesis of sensorimotor representations and natural lan-
guage in everyday human interaction. POETICON views
the human as a cognitive system as consisting of a set
of different languages (the spoken, the motor, the vision
language, and so on) and aims to develop tools for pars-
ing, generating, and translating among them. One of the
main goals of POETICON is to provide a large, detailed
corpus of recordings of human actions (movements and
facial expressions), human-object interactions (picking up an
object), and human-human interactions (preparing a dinner,
or cleaning the kitchen) in every-day contexts. What sets our
work apart from previous, related efforts is the care taken
to provide measured comparative data by means of high-
tech recording equipment such as motion capture of human
body movements and objects together with synchronized
high-definition camera footage. The data recorded within the
project is not only useful for modeling human (inter)actions
through computational analysis, but also for novel, perceptual
experiments within the context of action understanding2.

In the first part of the paper, we present the technical de-
tails behind the POETICON corpus and describe its contents
and structure. In the second part of the paper, we present
results from an initial perceptual experiment on the POETI-
CON corpus that investigates peoples’ ability to interpret the
contents of an everyday scenario depending on the amount
of information that is provided visually. To illustrate this
idea, imagine a computer animation with avatars based on
two persons interacting in a kitchen environment handling
different, clearly visible objects. If the two persons were, for
example, preparing a drink, surely everyone would be able
to infer this from a few key interactions and manipulations
of tell-tale objects. However, would we still be able to infer
that a drink was being prepared when the key objects are
only represented as bounding boxes? What about when no
objects at all are present? Will the actions alone be enough to
uniquely determine the scenario? The analysis of the human
data provided by this experiment yields a potentially im-
portant benchmark for computational experiments on action
understanding that try to parse longer, more complex events
into a structured series of sub-actions and interactions.

II. RELATED WORK AND MOTIVATION

Humans are capable of inferring an incredible amount of
detail about the actions of people, as well as their interac-
tions. As far as action understanding is concerned, much

2For an initial description in the context of linguistic analysis, see [12].



research has been devoted to understanding how humans
process very sparse motion displays, also known as point-
light figures, invented by Johansson in the late 1970s [7].
These displays are created by attaching a light source to
the joints of a person. The movement of these points is
not only enough to provide strong cues about the person’s
sex [18], and mood [14], but also can be used to reliably
predict actions [3]. The exact nature of the information that
is processed by humans in this context remains under dispute
[2], but it is clear that a great deal of information is provided
by the motion of relatively few joints of the human body.

Accordingly, many databases are available that deal with
action recognition. For human actions, in perception research
this subject matter is also often found in the context of
”biological motion”, with databases of motion capture data
including [9], [10]. Another well-known database is the
CMU Graphics Lab Motion Capture Database (available
at mocap.cs.cmu.edu), which contains motion capture
data of various actions in categories such as locomotions,
pantomime, and expressions. Whereas it contains a lot of
data on locomotion patterns, longer activities as well as
human interactions are very much underrepresented and in
addition only very loosely organized. As far as human-
human interactions are concerned, a recent motion-capture
database [10] contains 20 elementary interactions (such as
point to the ceiling, I am angry, pick up, etc.) each performed
by one male and one female couple. In the context of
computer vision, well-known annotated databases containing
video data of human actions (as opposed to either motion
capture data, or video data of actors in motion capture suits)
include the IXMAS dataset for recordings in a controlled
environment [19] and the Hollywood dataset for a larger,
more varying dataset [11]. For a good overview of recent
work in computer vision concerning recognition of actions
from video, also see [13].

As far as action understanding on a larger scale is
concerned, research on human perception has shown that
most longer events are usually broken down into coherent
sub-actions. For common everyday behaviors, these sub-
actions usually correspond to the goals underlying the actor’s
actions [8]. Still snapshots from those boundaries are usually
remembered better (for both adults and even for young
infants [15]). Recent results from neuroscience have shown
that the synchrony in the interpretative act of understanding
and being immersed, for example, a suspense movie even
extends to the brain itself by activating the same brain regions
across individuals time-locked to plot events in the movie [5].
A prominent theory in this context is the Event Segmentation
Theory [8]: this theory is based on a predictive model in
which the observer creates a representation of the current
action that is happening currently and uses it to predict future
events. As soon as prediction errors occur, the current event
models are updated which results in a transient increase in
processing and therefore helps to encode the whole sequence
of events into long-term memory. This is a compositional
model in the sense that repeating patterns in the input can
be used to improve prediction. It is also hierarchical in the

sense that events and actions are represented at different
granularities and levels (see also [1] for a review of different
hierarchical, computational models used for modeling human
action understanding).

As stated earlier, relatively few, well-structured datasets
are available that contain video and/or motion capture data
from extended scenarios, or longer action sequences (that is,
more than 30 seconds). Perhaps the closest data source that
is currently available is the kitchen dataset, which is part of
the Carnegie Mellon University Multimodal Activity (CMU-
MMAC) Database [6]. The dataset is still under development
and currently contains data from 25 subjects each of whom
was asked to prepare five different recipes in the kitchen.
It contains video data from five stationary and one mobile
camera, audio data, some inertial motion data from the
subjects hand, as well as motion capture data of the full
body including the hand. RFID tags are used to identify some
nearby objects that are handled by the person.

Another, very similar dataset - also in terms of the setting
chosen - is the TMU kitchen dataset [17], which contains
recordings of a few (up to four) subjects, who are setting a
table according to a pre-defined layout. It contains multi-view
camera data, RFID data from a few objects, as well as kine-
matic data from a marker-less body tracking software. The
table-setting task was done in a few different ways (ineffi-
cient robot-like, as well as efficient human-like strategies for
setting the table), and some additional recordings on simple
actions are available, making this corpus a good resource for
learning simpler, more constrained human actions (although
it faces the difficulty that only a few subjects are available,
with no repetitions of the full scenario).

With our corpus, we have aimed at a broader range of
everyday scenarios, which are, in addition, available both as
a natural video recording and as a comparative, kinematic
recording. In the comparative recordings, we collected mo-
tion capture data (from both people and a few key objects),
as well as video and audio data. In the natural recordings,
the same actors act out the script in a realistic surrounding
without any disturbing marker sets, cameras, cables, etc. This
data therefore provides an excellent testbed for computer
vision algorithms that need to work in realistic environments.
Additionally, the natural recordings were recorded from
multiple view angles. Finally, in order to provide additional
data for training and testing, we also recorded all scenarios
three times with each pair of actors in both recording
settings. Taken together, our data therefore is ideal for testing
the generalizability of computational approaches to action
understanding in both kinematic and realistic video data.

III. THE POETICON CORPUS

In the following, we describe the every-day scenarios and
the recording settings and equipment of the corpus.

A. Scenarios

First, we selected 6 different scenario that can take place
in a typical kitchen/dining-room setting. The scenarios were:
cleaning the kitchen, preparing a Greek salad, setting the



table, changing the pot of a plant, preparing Sangria, and
sending a Parcel. Note that all of these events contained
many sub-actions that actually need to happen in order for
the whole event to unfold and to become meaningful. We
carefully wrote the scripts such that they included spoken
dialogue, several interactions with key objects, body move-
ments across the recording volume, as well as several small
situations that might elicit facial expressions (although the
latter are not the focus here).

An excerpt from the cleaning scenario, for example, reads:

The floor is a bit dirty, especially now that you have changed the
pot for the new plant. Before preparing dinner, you need to clean
up a bit.
Person A: The plant sure looks good, but now the place is a bit
dirty. We cannot have dinner like that!
Person B: Ok, lets tidy up quickly. What shall I do?
Person A: Get a dry cloth and sweep the dirt off this chair! I will
sweep the floor.
Person B: SurePhew! I did not expect such a mess, when you said
we would change the pot of the plant.!
Person B gets a cloth and cleans a chair from dirt that had been
dropped while changing pots. Meanwhile, Person A picks up the
broom and swipes the floor quickly. Person B brings the dustpan
and holds it firmly in front of the broom, so that Person A pushes
the dirt from the floor onto the dustpan. Person B picks it up and
disposes of the dirt in the trashcan, but realizes that the trashcan is
full (Person B then empties bottles and cans).

Both natural and comparative recordings took place in a
kitchen / dining-room setup that contained a large table, four
chairs, a high-table, and a sideboard with several compart-
ments as the main pieces of furniture. The main objects that
were handled depended on the scenario, and included objects
such as a large alarm clock, a plant, a dustpan, a broom, etc.
In addition, kitchen implements like cutlery and dishes/cups
were also part of several scenarios.

After the actors learned the script and practiced the
scenario several times, the recordings were started. Each
scenario was recorded with 4 different pairs of actors. In
addition, each actor pair performed the whole string of events
three times to gather additional recording data and to provide
information about intra-individual variance in acting out the
scenarios. The resulting recordings are between 2 and 7
minutes long (depending on the scene and the pair of actors).

B. Natural recordings

The natural recordings took place in the kitchen setup and
were recorded using 5 high-definition camcorders (Canon
HF100) with resolution of 1960x1400 pixels, 2 of which
carried a wide-angle lens (DHG 0,75x Wide Angle Converter
52 mm). The cameras also recorded sound with stereo
microphones. The 5 cameras were placed to afford different
views onto the action and interaction spaces in the room and
are shown in Figure 1 n1)-n5). The two wide-angle cameras
n1, n2 were used to record overviews of the whole scene
and were placed at opposite corners of the room. The other
three cameras focused on the kitchen table, the counter-top,

n1)

n2)

n3)

n4)

n5)

gt1)

gt2)

Fig. 1. Screenshots from the five camera perspectives of the same frame for
the natural recording condition (n1-n5) and the two wide-angle perspectives
of the comparative condition (gt1-gt2)



and the interaction space in which many of the person-to-
person interactions took place. The videos recorded with the
high-definition camcorders were cut and then exported into
QuickTime-movie format (.mov, highest quality settings).
Synchronization was achieved by cutting according to a
starting signal on the audio tracks of the cameras.

C. Comparative, kinematic recordings

All scenarios for the comparative, kinematic recordings
were recorded in the same kitchen setting. We first set up 2
synchronized, wide-angle HD camcorders placed at opposite
ends of the setup similarly to the natural recording setting.
Most importantly, however, the movement of the 2 persons
was captured with 2 Moven motion capture suits (Xsens
technologies) that yield high-definition data about a person’s
articulated movement based on inertial motion sensors. The
big advantage of the motion suits is that they are not affected
by occlusion as the sensors are mounted on the body directly.
This was a critical feature for our scenarios, as we tracked
the movement of two people in a confined space at the same
time. As the inertial sensors are prone to drift, the position of
the 2 persons in the room was tracked with the Vicon motion
capture system, using 2 helmets with tracking markers. In
addition, for each scene, several pieces of the furniture and
key objects were fitted with markers and also tracked with
the Vicon motion capture system. All kinematic recordings
were resampled to the 60Hz base rate of the Moven suits.

All actors went through a short calibration and test phase
in order to provide reliable motion capture data. In addition,
all actors first did the natural recordings to become more
familiar with the scenarios for the comparative recordings.

The Moven data was first post-processed to provide opti-
mal reconstruction of each actor’s actions (including setting
foot contact points, re-starting the calculation of the inverse
kinematics at difficult body postures, etc.). This data was
then exported as a standard bvh-file format. The Vicon
data was cleaned up and checked for lost markers and
then annotated to provide information about the various
rigid objects in the scene (the helmets of the two actors,
furniture, and key objects). Synchronization between the
camera videos and the kinematic recordings of both Moven
and Vicon data was achieved by cutting the data according
to both the audio track, and the start of the actions for
the kinematic recordings. Kinematic recordings from Moven
data and Vicon data were put into correspondence by hand-
written software, as the Moven-suits suffer from position-
and rotation-drift. We therefore read in the Vicon data of
the tracked helmets of the two actors and slaved the relative
kinematics to the coordinate system provided by the Vicon
data - we are currently developing a better integration method
of the two modalities to increase the quality further.

D. Consistency

As a detailed kinematic analysis is out of the scope of this
paper, here we present results from a simple, but effective
occupancy grid analysis that serves to show that people

are consistent across the three repetitions, and that data is
consistent within the same scenario type across actor pairs.

For this analysis, we took the kinematic data of the Vicon
tracked helmet of one person, which roughly provides an
indication of where the person stood in the room, and
counted how many times this marker entered one of 100x100
equally spaced cells in the room. This occupancy grid allows
us to effectively compare kinematic data without employing
more involved methods such as time series warping.
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Fig. 2. Spatial occupancy grids for all three repetitions of the cleaning
scenario for actor pairs 1 (a) and 2 (b), and for the salad making scenario
for actor pair 1. Note the similarities within repetitions and within scenarios.

Examples of these occupancy grids are shown in Figure
2 (data is color coded with blue meaning little occupancy
and red meaning high; to make the plot better visible, a
logarithmic color scale was used). Figure 2a shows the grids
for all three repetitions of the same actor pair for a cleaning
scenario - in addition to clearly showing that different time
was spent at different positions in the room, all three grids
look very similar at first glance. Similarly, Figure 2b shows
the grids for the repetitions of another actor pair - again all
three grids look similar. This is also true for an example
from the salad making scenario (Figure 2c). However, the
occupancy grid for this scenario looks markedly different
from the other two rows. In addition to the consistency within
actors, there seems to be also consistency across actors
within the same scenario - in other words, the occupancy
grids might be used as a very coarse identification signal for
what scenario it might be.

Figure 3 shows the correlation matrix obtained by cor-
relating the data contained in the occupancy grid across
3x3 cleaning scenarios and 1 salad-making scenario (this
data is a zoom of the total correlation matrix, the pattern
for the other scenarios is similar, however). This correlation
matrix confirms the data from Figure 2a,b in that data across
repetitions contains a similar variance as data across actors.



The data of the first 12x12 block shows no clear sign of 4
separate 3x3 block structures which would clearly separate
within-actor variation from across-actor variation.
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Fig. 3. Correlation of the spatial occupancy grid data from all 3 repetitions
of 4 actor pairs for the cleaning scenario (1-12) and 3 repetitions of one
actor pair for the salad scenario (13-15). Note the clear block structure
separating the scenarios.

In conclusion, this straightforward analysis shows that our
dataset is both consistent across repetitions and also across
actor pairs - this analysis, however, could be very much
improved by incorporating proper kinematic analysis and
sequence aligning to characterize the scenarios further (see,
for example, [4]).

IV. ANIMATIONS

Given that detailed motion capture data is available, it
becomes possible to create computer animated versions of
the every-day scenarios. Such animations provide full control
over all parameters and therefore open up novel possibilities
for perceptual and also computational experiments.

For our purposes, we created animated scenarios from the
motion-capture data of one actor pair for all six scenarios
using 3DS Max. For this, we first created coarse skeletal
models of the two actors fitted to their body size with the
standard ”biped” animatable character skeleton provided in
3DS Max (note, that the appearance of the characters can be
easily changed as required). In addition, we created realistic
3D models of the furniture (counter-top, table, service table
and 2 chairs), as well as realistic 3D models of the Vicon-
tracked key objects for each scenario.

The motion capture data from the Moven suits was im-
ported into 3DS Max, and positional and rotational drift
was corrected manually using the Vicon data and the movie
from one of the overview cameras as a reference. This
provided a much better integration of the two kinematic
datasets than the automatic drift correction mentioned above.
The key objects were animated using the Vicon data and—
where applicable—in addition attached to the hands of the
manipulating individual to better anchor the animation.

These animations were then imported into a real-time an-
imation environment (Virtools) to provide further flexibility
in interactively manipulating the content of the animation for
our experiments. Examples of possible on-line manipulations
include appearance and inclusion of objects, properties of

body kinematics, as well as general rendering parameters
(lighting, viewpoint, etc.). An example of an animation frame
is shown in Figure 4a - the other two images will be
explained below.

a)

b)

c)

Fig. 4. Screenshot from the same animation frame of Conditions 1-3: a)
high-res, b) low-res, and c) no-objects.

V. EXPERIMENT ON ACTION UNDERSTANDING

We know that humans can correctly identify human actions
happening at short time-scales already from sparse visual
information such as point-light displays: these include loco-
motion behaviors (walking, running, limping), simple object
manipulations (picking up, carrying), as well as basic human-
human communicative gestures (pointing, waving, greeting).
Little research, however, has been conducted on how humans
integrate information over longer time-periods to make sense
out of extended activities, such as the ones recorded in our
every-day scenarios. In addition, having access to controlled
animation data makes it possible to create novel experimental
paradigms for action understanding. To demonstrate this,
here we report results from a first experiment that tests how
well people can interpret a scenario given different levels of
visual information.

A. Experimental design

One of the common tasks to test how well people process
events is simply to collect verbal or written descriptions of
the events. These descriptions are then analyzed in terms of
their linguistic properties (such as number of words, number
of verbs, etc.) as well as their semantic content (such as
what is described at which level of granularity, etc.). In
our experiment, participants therefore were able to see the
animations two times and were then asked to give a title
to the scene, as well as to describe the actions of the two
people and the used objects in the form of a script. We chose



to use this more memory-intensive task, as we wanted to
tap into the stored representation of the scenario, rather than
into the immediately formed one, which would be accessible
by having participants provide a live voice-over during the
playback of the animation.

The different levels of visual information were achieved by
three conditions (example screenshots of the three conditions
for the same animation frame are shown in Figure 4):

1) Condition 1: avatars and high-res objects
2) Condition 2: avatars and low-res objects (as bounding

boxes)
3) Condition 3: only avatars, no objects

Condition 1 constitutes the baseline condition - people have
presumably full access to all necessary information about
the actions and objects that are needed to interpret the scene.
This information, however, is purely visual - even though the
actors of course provided detailed dialogue, our experiment
only tests how well people can understand the events based
on body movements and object interactions. Condition 3 is
akin to asking how well people can interpret pantomime -
an actor is miming to perform actions, which are, however,
devoid of any object that is being acted upon. One of the
advantages of computer animations is that this condition is
actually derived from the real set of actions which contain the
objects - this guarantees that the only information differing
between the full animation and the pantomime condition is
truly the absence of objects. This condition is interesting,
as it tests humans’ ability to infer complex events from
actions and body movements alone - note also, that our
animations did not include any facial animation, thereby
eliminating a usually rather active channel in pantomimes.
Finally, the animations which only show objects as bounding
boxes (Condition 2) constitute an intermediate case - in many
cases, having just a rough idea of the size of the object might
be enough to disambiguate actions and to imply the relevant
objects. In addition, relative object location is also key to
identifying an action (especially object location in relation
to the human body and the movement effector in particular).
If size and relative location were robust enough cues, we
would expect no difference between these animations and
the animations containing the clearly identifiable objects.

The experiment was run as a between-group design with
48 participants randomly assigned to the three conditions,
such that 16 participants saw each animation style. Partic-
ipants were compensated at standard rates for their partici-
pation. Before the experiment started, participants were in-
formed about the task and the exact experimental procedure.
Each of the six animations was shown twice (the order of
the animations was random for each participant, the different
conditions in the three groups were switched directly in
the Virtools environment). Participants had to watch the
first repetition closely paying attention to the actions and
potentially to (implied) objects in the scene. They then had
time to write down a script-like summary of the scenario
into a text-editor. After this, the animation was repeated and
participants were allowed to correct their description. After

each scenario, participants were allowed to take a brief break.
The whole experiment took around 1.5 hours.

B. Global interpretation ability

The most straightforward analysis is to ask whether par-
ticipants were able to correctly categorize the title of the
scenarios, which provides a global measure of event under-
standing. For this, we rated the titles given to the scenarios
for each participant as either correct or incorrect - the overall
data is shown as the three rightmost bars in Figure 5. The
data clearly shows that Condition 1 with all objects fares
best, followed by Condition 2, and Condition 3. This results
demonstrates that it is clearly possible to categorize scenarios
based on visual information alone, even in the absence of
objects. Note also, that the task was not a forced-choice task
in which participants had to chose between one of the six
categories - rather, it was a much more difficult free naming
task, in which participants had to come up with a suitable
title. In this context, the 42% recognition accuracy for the
pantomime condition (Condition 3) is, indeed, impressive.
However, as Figure 5 also shows, the data varies considerably
depending on the condition and the scenario - we therefore
need to interpret this data interaction more closely.

Fig. 5. Percentage of correctly recognized titles per scenario

Participants were clearly able to recognize all 6 scenes
(varying between 75-100%) in Condition 1 with an average
accuracy of 91%. At the other extreme, in Condition 3,
when no objects were visible, the first 3 scenes (cleaning,
preparing a salad and setting the table) were still recognized
(recognition rates: 81%, 69%, 81%, respectively), but the
remaining 3 scenes were not (recognition rate: 13%, 0%,
10% resp.). Thus, some scenes were easily interpretable from
actions alone (even quite complex ones such as making a
salad), whereas others were dramatically affected by the loss
of context object information (potting a plant). Interestingly,
for Condition 2, in which only bounding boxes were present,
we observed a significant improvement in recognition rate
compared to Condition 3 for two of the little recognized
scenes (parcel and sangria).

In summary, despite the fact that participants had no
information as to what scenarios they were going to see,
recognition results were surprisingly good for the conditions
with little or reduced visual information. For two out of three
scenes, indicating object sizes of key objects did seem to
provide a valuable cue to the scenario category.



C. Analysis of action type

We also observed a difference in how people described
the scenes. For this, the texts were subjected to a standard,
automatic computational linguistic procedure that automat-
ically extracts verbs from the texts. As a first analysis for
the text descriptions, we separated these verbs into ’actions
with objects’ (e.g. cleaning, taking, sweeping...) and ’body
movements’ (e.g. walking, looking, talking...). As Figure 6
clearly shows, with less information in the animations, more
emphasis was put on describing ’body movements’ rather
than ’actions with objects’. This trend was observed for all
six scenarios. The number of total verbs in the descriptions,
however, did not change across conditions, indicating that
participants produced descriptions containing roughly equal
numbers of actions.

Fig. 6. Percentage of verbs describing actions and body movements

D. Recognition of individual actions

At the finest level of granularity, we analyzed how well
participants were able to recognize each individual action
/ object sub-action within the scenarios. For this, we first
determined a rough ”ground-truth” script against which to
evaluate the responses of the participants. An example of
such a script is shown in Table I for the cleaning animation.
We then matched the individual scripts against this table and
determined which action/object pair was correctly identified.
In the following, we will focus on the data for one scenario
- the cleaning scenario.

First of all, we evaluated the intra-class correlation - we
had 16 participants for each of the three conditions and it
might be that their performance was actually too varying to
provide a consistent picture. Based on [16], we used a well-
established measure for rater reliability, more specifically
ICC(2,’average’), which measures how well participants fit
with the average performance. This measure is between 0 (no
consistency) and 1 (full consistency) - the values for the three
conditions were 0.88, 0.90, 0.90, respectively, indicating
a relatively good agreement in terms of the interpretation
performance in the three conditions.

On average, recognition accuracy for the cleaning scenario
was 34.2% in Condition 1, 26.7% in Condition 2, and 18.5%
in Condition 3 - a result, that one might have expected given
our previous findings. What is more interesting, however, is

to look into the data for individual actions as shown in Figure
7: looking at the blue bars for Condition 1, it seems that
only a few actions were uniquely determinable overall (but
see below). Several actions involving the broom were equally
recognizable across all three conditions, whereas actions with
the dustpan and the clock were less so. One reason might be
that actions related to the broom are less context-dependent -
the sweeping motion is instantly recognizable, for example.

Again, we want to stress that our results were obtained
with free-form text - the performance levels we observed
are therefore quite impressive in all conditions. It should
also be noted that the interpretation at this fine-grained level
- necessarily - has many potential sources of noise. First, a
low recognition rate does not mean that the action/object pair
was not recognized at all - it could simply be that participants
did not remember the action in their script, or that they did
not deem it important for the overall event structure. Second,
not all objects that were named in the ground-truth script for
the scenario were actually part of the animation (see Table
I), such that it might be no surprise that the action involving
the lamp would not be recognized well. Finally, since there
were two people involved, sometimes actions happened that
might be less well visible from the viewpoint from which the
animations were rendered. We plan to address these questions
in follow-up experiments in more detail.

TABLE I
TIMELINE OF ACTIONS AND OBJECTS FOR THE CLEANING ANIMATION.
OBJECTS IN BOLD ARE PART OF ANIMATIONS IN CONDITIONS 1 AND 2.

time action/object
0:03 A and B talk
0:13 A takes a rag from the sideboard
0:16 A wipes off a chair
0:13 B gets a broom
0:18 B uses the broom
0:29 A gets a dustpan from the sideboard
0:30 B swipes the dirt onto the dustpan
0:34 B returns the broom
0:37 A puts the dustpan onto the trolley
0:38 A takes a bottle and paper from the dustbin
0:46 A returns them to behind the sideboard
0:57 A empties the dustpan into the dustbin
1:02 A returns the dustpan to behind the sideboard
0:56 B gets a garbage bag and puts into the dustbin
1:12 B polishes/dries glasses at the table
1:14 A returns the dustpan into the sideboard
1:22 A walks behind the sideboard
1:24 A wipes off the lamp
1:29 A switches the lamp on and off
1:34 A gets a light bulb from sideboard and replaces lamp’s bulb
1:37 B goes over to the sideboard
1:39 B wipes off the sideboard and the alarm clock
1:46 B lifts the alarm clock and puts it onto the sideboard
1:54 B gets batteries from sideboard and replaces clock’s battery
2:00 A takes the old light bulb to the dustbin
2:06 A goes over to the sideboard
2:07 A takes the clock
2:08 A sets the clock
2:06 B wipes off the sideboard
2:16 A and B talk

VI. CONCLUSION

This paper has presented a novel corpus for action un-
derstanding that has several distinguishing features: First,



Fig. 7. Accuracy of participants for recognition of individual actions/objects. The x-axis description follows Table I

the corpus shows natural, yet script-controlled long event
recordings at all interaction levels (human-human, human-
object) in well-defined scenarios. Second, data from sev-
eral individuals was recorded to provide further data on
intra-individual variance. An occupancy grid analysis has
shown that the data is consistent across both variations -
further kinematic analyses are needed to address this issue
fully. Third, the corpus also contains both natural as well
as matched high-tech recordings which makes it suitable
both for cognitive experiments and computational modeling.
Finally, we provide multimodal data (multiple camera angles,
audio, 3D kinematic data, 3D tracking data of focus objects)
from different sensors that can support analysis across a large
number of dimensions from 2D analysis of video streams up
to complex models of 3D articulation.

In addition, we have presented results from a first experi-
ment on human action understanding that has used data from
the corpus. We have shown that humans are not only capable
of inferring the overall, global scenario category, but also
that we are rather adept at extracting detailed event structure
- even in the absence of detailed visual information. Our
experiments show that size information is often enough to
infer the relevant objects in the context of the actions and
vice versa. The analyses reported here of course present only
a brief look into the work that has been and will be done on
the ability of the human to interpret complex (inter)actions.
Through the use of state-of-the-art VR technology in this
and future experiments, we hope to be able to shed further
light on this fundamental cognitive capability. Finally, it will
be interesting to see how well computer vision algorithms
(based on both kinematic and, perhaps even more challeng-
ing, on only visual information) will be able to interpret our
scenarios. Given that the scenarios seem consistent, the data
can be easily split into training and testing sets to try and
infer both global and local event structure.
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